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Parking Lot
(Former S3 Ponds) 

Outer loop

Outer loop
Injection:FW024
Extraction: FW103

Inner loop
Injection: FW104
Extraction: FW026

Monitoring wells
FW101-2 (-40 ft)
FW101-3 (-35 ft)
FW102-2 (-40 ft)
FW102-3 (-35 ft)

*

Inner loop

(Stanford/ORNL)

Bioremediation of U(VI) Contaminated Sediments in situ
at the FRC



Principal Coordinate Analysis of Temporal and Spatial Population Changes

FW101-2-558d

FW102-2-278d FW101-2-278d

FW026-535d
FW104-746d

FW101-2-535d

FW103-535d

FW104-712d

FW-101-2-641d

FW-102-2-670d

FW-102-2-726d

FW-101-2-726d

FW-104-641d

FW-102-2-622d

All wells at earlier times and
outer wells at later times

Unc. Burkholderia sp.
Unc. Comamonadaceae sp.

Bioreduction wells at later
times

Unc.Desulfovibrionaceae sp.
Unc. δ-proteobacterium sp.

Injection and treatment wells
during U(VI) reduction

FW-101-2-622d

Unc. Burkholderia sp.
Unc. Actinobacteriaum sp.
Unc. Geobacter sp.
Unc.Desulfovibrionaceae sp.
Unc. δ-proteobacterium sp.

Gallionella sp.

(Hwang et al., in prep)



DNA

RNA

Protein

Population

Community

Ecosystem

Cell

Ecology
Computational

Ecology
Geochemistry
Computational

Desulfovibrio are
present at elevated
numbers at the FRC
during bio-stimulation

How do cellular responses to relevant field
conditions impact cellular activities and
survival?

Genomics to Elucidate Field Relevant Responses

Desulfovibrio spp. have also been
observed as predominant populations
at Hanford 100-D during bio-
stimulation (Hazen et al.)
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Computational
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Lactate and Sulfate Permeases Displayed Different Trends
of Expression

• Results suggested that different permeases were used with respect to changing nutrient levels

• An alternative explanation could be growth-rate dependent regulation

• Three presumptive LDH genes did not show significant changes
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Major Changers as Electron Donor was Depleted

● Almost all phage-related genes were up-expressed into and during stationary-phase

● A possible feo system was up-expressed and a ferritin was down-expressed
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Cluster Analysis of Electron Donor Depletion 

14 h

20 h

23 h

29 h

35 h

43 h

51 h

67 h

Lactate

Energy
Replete

Energy
DepleteCarbon starvation protein (cstA) ↑

Iron (II) transport (feoAB) ↑
Catalase (katA) ↑
Phage shock protein (pspA) ↑
ATP synthase (atp G,H,A,F2) ↓
Ribosomal proteins ↓

Phage genes ↑
Superoxide dismutase (sodB) ↑
Cold-shock protein (csp) ↑
Carbohydrate-related genes ↑
ATP synthase (atpG) ↓
Lactate permease ↓

Proteases ↑
Phage genes ↑
engC ↑
Chaperonins dnaK, myb, csp ↑
Ribosomal proteins ↓
ATP synthase (atpE,B,C,G) ↓
Fructose-bisphosphatase (fbp) ↓

Lipoprotein ↑
ngr, cydB ↑
Proteases ↑
Iron (II) transport (feoAB) ↑
Phage genes ↑
Super-oxide dismutase (sodB) ↑
Carbohydrate-related genes ↑
ATP synthase (atpG) ↓
Ribosomal proteins ↓
Lactate permease ↓
Sulfate permease ↓

(Clark et al., 2006)



In addition to expected changes (e.g., energy conversion, protein turnover, translation,
transcription, and DNA replication/repair)

Genes related to :  phage
carbohydrate flux
outer envelop
iron homeostasis

played a major role in the cellular response to nutrient deprivation under the tested growth
conditions

rpoS – universal stasis transcriptional factor ?

The results indicated that a subset of approximately 110 genes were uniquely up-expressed as the
cells transitioned to stationary-phase (14 on the megaplasmid).*

Some Conclusions from e- Donor Depletion

(Clark et al., 2006)



D. vulgaris requires H2S, hydrogenases and cytochrome c3 for
the reduction of Cr(VI) (Chardin et al., 2002)

Cr(III) can be detected on the cell surface and in the periplasm
(Goulhen et al., 2005)

Energy production without growth in the presence of Cr(VI)
(Chardin et al., 2002)

(acetate, sulfate, growth-??)
(re-establish Eh ?)

U(VI) inhibited SO4-reduction (Elias et al., 2004)

Cr(VI) Responses in D. vulgaris
Cr is the third most common pollutant at hazardous waste sites and the second most common inorganic contaminant after Pb
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(Klonowska et al., in prep)
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•Changes in the membrane lipids
•Changes in secondary protein structures
•Changes indicative of the PO2

- groups in nucleic acids
•Changes in the C-O-C and C-O-P groups in various oligo- and polysaccharides

FTIR After Cr-Treatment

Holman et al.
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-DNA repair
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(Fields et al., in prep)



Ascorbate acts as a highly potent inducer of chromate mutagenesis via DSBs in
epithelial cells (NAR 35:465-76. 2007).
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DVUA0096DVUA0095DVUA0094DVUA0093DVUA0092DVUA0091 DVUA0097

chrBchrAkatA HP facilitator radical SAM

0.05 mM Cr
0.05 mM Cr

0.1

1

0 20 40 60 80 100

O
pt

ic
al

 D
en

si
ty

Time (h)

0.10 mM Cr
0.10 mM Cr

0.1

1

0 20 40 60 80 100

   
  O

pt
ic

al
 D

en
si

ty
 

Time (h)

chrAB, Megaplasmid, and Cr(VI) Tolerance
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DVU0624 NapC/NirT cytochrome c family protein
DVU0625 cyt c nitrite reductase, catalytic subunit NfrA
DVU1080 iron-sulfur cluster-binding protein
DVU1081 iron-sulfur cluster-binding protein
DVU2543 hybrid cluster protein
DVU2544 iron-sulfur cluster-binding protein

DVU0303 hypothetical protein
DVU0304 hypothetical protein
DVU2383 tonB dependent receptor domain protein
DVU2571 ferrous iron transport protein B
DVU2572 ferrous iron transport protein A, putative
DVU2573 hypothetical protein
DVU2574 ferrous iron transport protein
DVU2680 flavodoxin

DVU0927 ribosomal protein L21
DVU1211 ribosomal protein L28
DVU1303 ribosomal protein L3
DVU1310 ribosomal protein L16
DVU1319 ribosomal protein L18
DVU1574 ribosomal protein L25
DVU2518 ribosomal protein L13
DVU2924 ribosomal protein L11
DVU2925 ribosomal protein L1
DVU2926 ribosomal protein L10

DVU0775 ATP synthase F1 beta subunit
DVU0776 ATP synthase F1 gamma subunit
DVU0777 ATP synthase F1 alpha subunit
DVU0778 ATP synthase F1 delta subunit
DVU0917 ATP synthase F0, C subunit
DVU0918 ATP synthase F0, A subunit
DVU1286 reductase, transmembrane subunit, putative
DVU1287 reductase, iron-sulfur binding subunit, putative
DVU1290 nitrate reductase, gamma subunit, putative

T1  T2  T3 T4 T5

A

B

C

D
↓ ATPase synthase
↓ NO3 reductase

↓ ribosomal proteins

↑ HP
↑ feoAB
↑ Fe(II) transport

↑ NO2 reductase
↑ cytochrome

NO2 Exposure

(He et al., 2006)



NO2 Exposure

(He et al., 2006)
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(Fields et al., in prep)



What can organismal biology and ecology do for
mineral and contaminant biotransformation?

More to Heavy Metal Stress than Just Heavy Metal

More biomass?  More reducing power? More carbon? What type of precipitates?
Aqueous-phase or the solid-phase?  How do microbes affect flow paths?

The more we know about how the cell (community) works as a system----the more we will be able
to predict and control.

If one wants to understand and predict carbon and energy
utilization (mass balance)----then we need to understand how
cells respond to stressful conditions by altering carbon and
energy flow.

At the cellular level and upward through the community.

What we want and what the bugs want may be two different
things.  Bug wants:  grow efficiently - increase biomass –
reproduce

Our wants:  efficient activity of interest with minimal input

Biochemical capacity f(t) and f(p)
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